многообразие

  • 49Центральное многообразие — особой точки автономного обыкновенного дифференциального уравнения инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения.… …

    Википедия

  • 50ДРЕВОВИДНОЕ МНОГООБРАЗИЕ — гладкое нечетномерное многообразие специального вида, являющееся краем четномерного многообразия, строящегося из расслоений над сферами с помощью склеек по схеме, задаваемой нек рым графом (деревом). Пусть pi: i= 1,2, ... расслоение над n сферами …

    Математическая энциклопедия

  • 51НЕСГЛАЖИВАЕМОЕ МНОГООБРАЗИЕ — кусочно линейное или топологическое многообразие, не допускающее гладкой структуры. Сглаживанием кусочно линейного многообразия Xназ. кусочно линейный изоморфизм где М гладкое многообразие. Многообразие, не допускающее сглаживания, и наз.… …

    Математическая энциклопедия

  • 52Шершавое многообразие — Шершавое или несглаживаемое многообразие  топологическое многообразие, не допускающее гладкой структуры. Более точно, топологическое многообразие не гомеоморфное никакому гладкому многообразию. Содержание 1 Пример …

    Википедия

  • 53КОЛЕЦ МНОГООБРАЗИЕ — класс колец M, удовлетворяющих заданной системе полиномиальных тождеств. К. м. можно определить аксиоматически, как наследственный класс алгебр, замкнутый относительно взятия гомоморфных образов и полных прямых сумм (см. Алгебраических систем… …

    Математическая энциклопедия

  • 54КЭЛЕРОВО МНОГООБРАЗИЕ — комплексное многообразие, на к ром можно ввести Кэлера метрику. Иногда такие многообразия на …

    Математическая энциклопедия

  • 55ПОЛУГРУПП МНОГООБРАЗИЕ — класс полугрупп, задаваемый системой тождеств (см. Алгебраических систем многообразие). Всякое П. м. будет либо периодическим, т. е. состоит из периодич. полугрупп, либо надкоммутативным, т …

    Математическая энциклопедия

  • 56Дифференцируемое многообразие — Дифференцируемое многообразие  топологическое пространство, наделенное дифференциальной структурой. Дифференциальные многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях… …

    Википедия

  • 57ПИКАРА МНОГООБРАЗИЕ — полного гладкого алгебраического многообразия Xнад алгебраически замкнутым полем абелево многообразие , параметризующее факторгруппу Diva(X)/P(X).группы Diva(X). дивизоров, алгебраически эквивалентных нулю, по группе главных дивизоров Р(X), т. е …

    Математическая энциклопедия

  • 58НЕПРИВОДИМОЕ МНОГООБРАЗИЕ — алгебраическое многообразие, являющееся неприводимым топологическим пространством в топологии Зариского. Иначе говоря, Н. м. алгебраич. многообразие, к рое нельзя представить в виде объединения двух собственных замкнутых алгебраич.… …

    Математическая энциклопедия

  • 59Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения …

    Википедия

  • 60Симплектическое многообразие — Симплектическое многообразие  это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной 2 формой. Симплектическое многообразие позволяет естественным геометрическим образом ввести гамильтонову механику и даёт …

    Википедия

  • 61ДВУМЕРНОЕ МНОГООБРАЗИЕ ОГРАНИЧЕННОЙ КРИВИЗНЫ — метрическое пространство, являющееся двумерным многообразием с внутренней метрикой, для к рого определены аналоги таких понятий двумерной римановой геометрии, как длина и интегральная кривизна кривой, площадь и интегральная гауссова кривизна… …

    Математическая энциклопедия

  • 62БРАУЭРА - СЕВЕРИ МНОГООБРАЗИЕ — алгебраическое многообразие над полем k, которое, если его рассматривать над алгебраич. замыканием поля , изоморфно проективному пространству. Арифметич. свойства таких многообразий изучал Ф. Севери (F. Severi, 1932), позднее Ф. Шатле [1] вскрыл… …

    Математическая энциклопедия

  • 63ДЕЙСТВИТЕЛЬНОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — множество A = X(R)действительных точек алгебраич. многообразия X, определенного над полем R действительных чисел. Д. а. м. наз. неособым, если X неособое алгебраич. многообразие. В этом случае Аявляется гладким многообразием, а его размерность… …

    Математическая энциклопедия

  • 64ДИФФЕРЕНЦИРУЕМОЕ МНОГООБРАЗИЕ — локально евклидово пространство, наделенное дифференциальной структурой. Пусть X хаусдорфово топологич. пространство. Если для каждой точки хО X найдется ее окрестность U, гомеоморфная открытому множеству пространства Rn, то Xназ. локально… …

    Математическая энциклопедия